SOME PROBLEMS CONCERNING THE THERMODYNAMICS
OF IRREVERSIBLE PROCESSES

I. M. Shter ‘ UDC 536.7

An approximate solution is obtained to the linearized Boltzmann equation, on the basis of
which the transmission laws are then generalized. The hyperbolic equation of heat conduc-
tion is also derived.

A fundamental problem in nonequilibrium thermodynamics is to establish a relation between the dis-
tribution of the generalized potential and the flux of the generalized charge. A body elastically deformable
under small shearing stresses is called a solid. Most solids have a crystalline structure. A crystal is
a substance with a regular periodic structure containing one or more atoms of elements. "Electron gas"
and ion oscillations in the crystal lattice are transmitters of generalized charge. Among the most impor-
tant processes interfering with the motion of electrons in metals and semiconductors is the scatter of
charge carriers by lattice oscillations. The electron—lattice interaction is responsible for the fact that
both the electrical and the thermal conductivity of metals as well as the mobility of electrons and holes in
semiconductors at higher temperatures are functions of the temperature, and it plays a decisive role in
thermoelectric effects such as superconductivity.

The aggregate of conduction electrons can be characterized by the distribution function. The elec~
tron velocity in a crystal is defined as

1
Vg = F Vx€ (k)’ (1)

where h* = h/2l1with h denoting the Planck constant, k denoting the wave vector, and & denoting the energy
of an electron; the wave vector k varies according to

h*k =F, (2)

where k = dk/dt, t denotes time, and F denotes the force acting on an electron. The distribution function
fk, r, t) is defined so that the number of electrons in a six-dimensional volume element dkdV at time t
will be '
1
—4ﬁTf(k, r, {)dkdV. 3}
During equilibrium the distribution f£(k, r, t) depends on ¢ only and becomes the Fermi distribution

1
fo(e) == AT - 4)

with 7 denoting the chemical potential, k, denoting the Boltzmann constant, and T denoting the temperature.
According to Liouville's theorem, the total increment of the distribution function within the time dt is

df o f . of of

— = —kvf —vye f - —- [—}

dt ot ot collision
Here [08£/8t] collision denotes the increase in the number of electrons in the volume dkdV due to scatter.
Equation (5) is the Boltzmann kinetic equation. We linearize the collision integral by introducing a relaxa-
tion time 7* based on the equality

=0. (5)
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This relaxation time, being a time constant, characterizes the exponential law according to which the per-
turbed distribution f(k, r, t) tends toward the equilibrium distribution f;. The approximation (6) is not
valid for pure metals at temperatures about half as high as the Debye temperature. The relaxation time
introduced here will be meaningful, if it does not depend on the kind of perturbation. I can be shown that
the relaxation time has a physical significance whenever the change in the energy of an electron during one
collision is much smaller than k,T. At very low temperatures the electron—lattice scatter becomes very
weak and the relaxation process associated with the elastic scatter of electrons at impurities becomespre-
dominant. In this case equality (6) is entirely valid. The solution to (5) under condition (6) will now be
sought in the following form:

Fko 1, ) =fo(e) + fa (K, 1, 9) @
with the assumption that
fulk v )= — 0k, 1, e ®)
de
and fyk, r, t) assumed much smaller than fi(¢). Iserting (7) into (5) yields

Py o & by, =2 o 0D Do ©

Oe ch* *  Os of  Je
where
of of
P=cE—(c—n)vinT. vfxAf,=—2vT -+ =2yn.
( ) \ fo ar Vv on vn (10)

Here H is the magnetic field intensity and E is the electric field intensity. On the basis of (4), we can
write
Ve ~—%’—;’[Vn~;—(s—n)vlnT]- (11

The second term on the left-hand side of Eq. (9) can be expressed as

< xHyr, = o 0 T, (12)
where
Q= yeXV,-
Then (9) can also be written as .
2, 2P pyi o dm). (13)
ot T* ch* _

This equation is the fundamental one in the relaxation approximation.
Let us find the solution to Eq. (13).
Case I H =0, i. e., there is no magnetic field present. Now (13) becomes

¢ o

™

Y L (14)
) T*
0
When E #0 and VT = 0, then we have P = eE and
t—t
£ e
af s
Flo v 0= fo®— S g oBv - dr (15)

[}

When E = 0 and VT #0, then

flk, r, ) = dg. (16)

{
ve—m) 0 O (VI ¢
h* ok Oe )
o
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iteration method, with

Case IL H =0 and the energy surfaces are of arbitrary form. Equation (13) can be solved by the

—t
¢ g?
OO == S‘PVT* —dg, 17
¥
0
taken as the zeroth approximation. Then the first approximation is
¢ &

DL = OO 4

T -

ewr gL(H-Q®O)d§.

ch** | 1 .
0

(18)
In analogous manner it is possible to find also the subsequent approximations. The iterative approximation
process converges when (etT*H/m*c) < 1, where m* denotes the effective electron mass,

Using this method, the author has determined the distribution function under certain assumptions.

With the distribution function known, one can then find the characteristics of the transmission process.
The flux of generalized charge is determined according to the formula

e .
Ir, f)= Vi vf (k. 1, f)dk.
The electrical current at H = 0 and VT = 0 is calculated as

19}
¢ &
e®
= e, j E°_d, (20)
17*
Y]
where
17 . Of " dsds
k, = v vev)er Sl dk, | dh = i )
Pl R el B = (20a)
8
In the derivation of (20) it has been assumed that r* is isotropic, i. e., independent of the wave vector k.
The electrical conductivity is
o = _é; — e (21)
On the basis of (20), we obtain the relation
ot
[+ v — = kye'E [ S = oE
-~ T ; e or o (22)
Equation (22) represents the generalized Ohm's Law.
Let us calculate the current and the energy when H= 0 and VT #0. The formal expressions for
these quantities are
R ¢ = ¢ =
o ® ™ o »
el (B e (e (2 Ld“‘__kheslT—&-«dﬂ 23
l_kle'SET*dg C.SY(T e e | S it (23)
0 0 Y
PR s : it 1 o
T* # T+
e (EE _(T Vel gl g VYL 4 24
q_k,le.E dt | V(T o e ) T Tt (24)
0 o 0
where k, is found from (20a).

In Eq. (23) we let I= 0, then system (23)-(24) yields the value of g:

‘ =
q- ky—kiky vT &%

Ry

de.
J T ¢
1]
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Let us assume that (k%—k1k3)/k1 = —y¥, with n*/T = ndenoting the thermal conductivity. Now (25) yields
the generalized equation of heat conduction

q-+ T %;'— = —xyT, (26)

first derived by A. V. Lykov.

On the basis of these results, we will examine the thermoelectric effects. From (23) follows a rela-
tion between the electric field intensity and the temperature gradient. When I= 0 and V5 = 0, then (23)
yields

= ky — Mk,
abs ek, T .

27)
Expression (27) represents the absolute value of the thermoelectromotive force which governs the Seebeck
effect.
Let us calculate the rate of heat generation per unit volume of solid
W =IE —divq, (28)
where IE is the work of the electric field and div q is the divergence of the thermal flux. We now insert

E into (28), according to (23), and .

t =

divg = —=»* YdiV(ﬂ) S,
L] T ) T*
0
then
( 1-1* —g-) 1 )
W o1 [ - p d — Eabsj —divq (29)
or
L . AR ITVE s — div g, (30)

The first term and the fourth term in (30) characterize the Joule heat and the dissipation of thermal flux,
i. e., processes of heat generation associated with electrical and thermal condictivity. The third term
describes the reversible heat generation, namely the Thompson heat Wr. The second term characterizes
the additional heat generation Wp = (7*/20) (91%/5t), indicating that a nonsteady electric current produces
an additional heat source.
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